locoDataMunger


source

extractDateStr

 extractDateStr (s)

source

readMetaAndCount

 readMetaAndCount (dataFolder, companionEspObj, startMin, endMin,
                   initialResamplePeriod, smoothing, longForm=False)

Reads the MetaDatas, CountLogs, FeedLogs, PortLocations from the path provided

Type Default Details
dataFolder str path to folder that contains all the relevant data files.
companionEspObj data object calculated from espresso package.
startMin int, the starting minute for the period to be included in the analysis.
endMin int the ending minute for the period to be included in the analysis.
initialResamplePeriod int period for resampling functions in milliseconds, default 50.
smoothing boolean parameter for whether or not to smooth the data.
longForm bool False parameter to indicate whether or not the multiple data files were from one longitudinal experiment.
Returns pandas dataframe contains all the metaData tables.

source

calculateSpeedinCountLog

 calculateSpeedinCountLog (countLogDf, companionPortLocationsDf,
                           smoothing, speedThreshold=30,
                           gaussianWindowSize=10, gaussianSTD=3)

Calcualtes speed from data in countLogs

Type Default Details
countLogDf pandas dataframe contains all the countLog tables.
companionPortLocationsDf pandas dataframe contains all of the portLocation tables.
smoothing
speedThreshold int 30 threshold to remove data points where speed is deemed too high, default value 30.
gaussianWindowSize int 10 window size for gaussian smoothing, default value 10.
gaussianSTD int 3
Returns pandas dataframe contains all updated countLogs, including newly calculated speed.

source

calculatePeriFeedLoco

 calculatePeriFeedLoco (countLogDf, companionPortLocationsDf,
                        companionEspObj, exptSum, monitorWindow=120,
                        startMin=0, endMin=120)

Calculates speed around feeds

Type Default Details
countLogDf pandas dataframe contains all the countLog tables.
companionPortLocationsDf pandas dataframe contains all of the portLocation tables.
companionEspObj data object calculated from espresso package.
exptSum
monitorWindow int 120 window size in seconds for the period before and after feed for speed to be calculated
startMin int 0 the starting minute for the period to be included in the analysis
endMin int 120 the ending minute for the period to be included in the analysis
Returns pandas dataframe contains updated feeds with associated per feed metrics.

source

fallEvents

 fallEvents (countLogDf, nstd=4, windowsize=1000, ewm1=12, ewm2=26,
             ewm3=9)

Calculates fall events

Type Default Details
countLogDf pandas dataframe contains all the countLog tables.
nstd int 4 number of standards deviations for calculating speed threshold for fall detection, default value 4
windowsize int 1000 number of samples around the fall event for speed threshold to be calculated.
ewm1 int 12
ewm2 int 26 moving average analysis parameter 2, default value 26.
ewm3 int 9 moving average analysis parameter 3, default value 9.
Returns pandas series a list of timestamps where falls happened

source

labelStretches

 labelStretches (vector)

source

correctInPortData

 correctInPortData (countLogDf)

source

intrapolateUnderThreshold

 intrapolateUnderThreshold (s, th)

source

assignStatus

 assignStatus (metaDataDf)