API

from nbdev.showdoc import *
from esploco import esploco

source

esploco.__init__

 esploco.__init__ (dataFolder, startMin=0, endMin=120,
                   companionEspObj=None, initialResamplePeriod=50,
                   smoothing=True, longForm=False)

Reads and stores information from countLogs produced by Critta espresso plugin

Type Default Details
dataFolder str path to the directory containing all output files of espresso assay
startMin int 0 starting minute for analysis
endMin int 120 ending minute for analysis
companionEspObj NoneType None from the espresso analysis package
initialResamplePeriod int 50 period of sample in ms (initialResamplePeriod = 50 ms, sampling frequency = 1000/50 = 20 Hz), default 50
smoothing bool True whether or not to smooth the trajectories, default True
longForm bool False whether or not the data input is the same set of flies but over many days.
Returns esploco object esploco.resultsDf : contains relevant output metrics
esploco.resultsDf.ID : from metadata
esploco.resultsDf.Status : ‘Test’ or ‘Ctrl’
esploco.resultsDf.Genotype : genotype
esploco.resultsDf.Sex : from metadata
esploco.resultsDf.MinimumAge : from metadata
esploco.resultsDf.MaximumAge : from metadata
esploco.resultsDf.Food1 : from metadata
esploco.resultsDf.Food2 : from metadata
esploco.resultsDf.Temperature : from metadata
esploco.resultsDf.#Flies : from metadata
esploco.resultsDf.Starvedhrs : from metadata
esploco.resultsDf.Date : date of feedlog
esploco.resultsDf.averageSpeed_mm/s : instantaneous speed of the fly
esploco.resultsDf.xPosition_mm : instantaneous x position of the fly
esploco.resultsDf.yPosition_mm : instantaneous y position of the fly
esploco.resultsDf.inLeftPort : proportion of time the fly was in left port
esploco.resultsDf.inRightPort : proportion of time the fly was in right port
esploco.resultsDf.countLogDate : date from countlog
esploco.resultsDf.feedLogDate : date from feedlog

source

esploco.calculatePeriFeedSpeed

 esploco.calculatePeriFeedSpeed (companionEspObj, monitorWindow=120,
                                 startSeconds=0, plotDiagonal=True,
                                 plotContrast=True)

Calculates speed of the fly around a feed

Type Default Details
companionEspObj object, default None from the espresso analysis package
monitorWindow int 120 size of the window in seconds before and after the feed to monitor speed in
startSeconds int 0 lower range of data to analyse, deprecated in v.23.12.11
plotDiagonal bool True whether or not to plot the diagonal speed plot
plotContrast bool True whether or not to plot the contrast plots
Returns esploco.feedsRevisedDf pandas dataframe that contains individual feeds and info about them in a time series.

source

esploco.calculateFallEvents

 esploco.calculateFallEvents (nstd=4, windowsize=1000, ewm1=12, ewm2=26,
                              ewm3=9)

Detects fall events

Type Default Details
nstd int 4 parameter in macd analysis
windowsize int 1000 window size in macd analysis
ewm1 int 12 parameter in macd analysis
ewm2 int 26 parameter in macd analysis
ewm3 int 9 parameter in macd analysis
Returns self.resultsDf updated to include falls

source

esploco.plotStacked

 esploco.plotStacked (endMin=120, metricsToStack=['Volume', 'Speed'],
                      colorBy='Genotype', plotTitle='',
                      customPalette=None, figsize=None,
                      plotNonFeeders=True, dotratio=20, dotbase=5,
                      dotalpha=0.4, bubbleYLabelSize=12, ylimPresets=None,
                      showRasterYticks=False, ribbonLegend=False,
                      bubbleLegend=True)

Plots a raster of feeds stacked with a selection of other metrics in a ribbon


source

esploco.plotChamberSmallMultiples

 esploco.plotChamberSmallMultiples (ncol=15, customPalette=None,
                                    setNumber=None)

Plots trajectories and or heatmaps in the arrangement of the chambers for each dataset

Type Default Details
ncol int 15 number of columns for the plots.
customPalette NoneType None user can supply a dict for use as a custom palette.
setNumber NoneType None user specfied set to plot.
Returns chamberSmallsTrack figure object.

source

esploco.plotMeanHeatMaps

 esploco.plotMeanHeatMaps (binSize=0.2, row=None, col=None,
                           reverseRows=False, reverseCols=False,
                           verbose=False, heatmapCMap='RdYlBu_r',
                           smooth=2, plotZScore=False, vmin=None,
                           vmax=None)

Plots heatmap of mean duration stayed at each location throughout the chamber grouped by criteria

Type Default Details
binSize float 0.2 the size of the pixel in the heatmap
row NoneType None a column name or independent variable to use for grouping the rows
col NoneType None a column name or independent variable to use for grouping the columns
reverseRows bool False to reverse the order of the rows
reverseCols bool False to reverse the order of the columns
verbose bool False to produce output
heatmapCMap str RdYlBu_r colormap used for the heatmap
smooth int 2 this defines how much smoothing happenes in with the Gaussian Kernel.
plotZScore bool False this toggles between plotting raw heatmap in seconds and z-score
vmin NoneType None this forces the vmin on the heatmap color scale
vmax NoneType None this forces the vmax on the heatmap color scale
Returns meanHeatmapFig figure object.